20 resultados para TRACE METALS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microarray plays a major role to identify the over- and under-expressed genes. It is a well-known fact that trace elements in our body play a major role in the metabolic processes of all living organisms. In this paper, the microarray studies related to major trace metals are reviewed. This review forms the basis for the converged effort to locate the genes that are either defective and destabilise the concentration of the trace metals or influenced by the changed concentration of the trace metals that are needed for proper functions of the human body, at different parts of the body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study expands the knowledge of the mechanisms that cause wool to yellow. It established that metals in wool influence the production of free radicals and the extent of degradation and yellowing of photo-irradiated wool. It also examined the relationship between the colour and trace metal content of fleece wool.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fly ash is generated from combustion of brown coal in power stations. The majority of fly ash is removed by electrostatic precipitators (ESP) and finally disposed into the landfill as prescribed wastes. A method was studied to add clay materials to the brown coal fly ash in order to form the so-called geopolymer network, which is effective at stopping the metal contents from leaching, and have minimum impact to the environment. The experiments were conducted parallel on leached fly ash and dry precipitator fly ash. The ratios of fly ash and added clay materials were varied to determine the effects of different compositions on leaching rates. Both X-ray diffraction analysis and scanning electron microscopy images showed that as the percentage of fly ash was increased, the formation of geopolymer is reduced. Eighteen metals and heavy metals were targeted during the leaching tests and the leachate samples were analysed using ICP-AES and ICP-MS. It was found that the reduction of metal leaching was achieved by adding up to 60% of fly ash to form the geopolymer like structure. Significant reductions were observed for calcium, strontium and barium. Leached fly ash achieved better stabilisation than dry precipitator fly ash for major elements. It's hard to quantify its effects on trace metals leaching due to their ultra low concentration in the fly ash. The samples spiked with trace metals of lead, zinc, mercury and barium showed remarkable reduction in leaching.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many parts of the world in which common infectious diseases are endemic also have the highest prevalence of trace metal deficiencies or rising rates of trace metal pollution. Infectious diseases can increase human susceptibility to adverse effects of metal exposure (at suboptimal or toxic levels), and metal excess or deficiency can increase the incidence or severity of infectious diseases. The co-clustering of major infectious diseases with trace metal deficiency or toxicity has created a complex web of interactions with serious but poorly understood health repercussions, yet has been largely overlooked in animal and human studies. This book focuses on the distribution, trafficking, fate, and effects of trace metals in biological systems. Its goal is to enhance our understanding of the relationships between homeostatic mechanisms of trace metals and the pathogenesis of infectious diseases. Drawing on expertise from a range of fields, the book offers a comprehensive review of current knowledge on vertebrate metal-withholding mechanisms and the strategies employed by different microbes to avoid starvation (or poisoning). Chapters summarize current, state-of-the-art techniques for investigating pathogen-metal interactions and highlight open question to guide future research. The book makes clear that improving knowledge in this area will be instrumental to the development of novel therapeutic measures against infectious diseases. ContributorsM. Leigh Ackland, Vahid Fa Andisi, Angele L. Arrieta, Michael A. Bachman, J. Sabine Becker, Robert E. Black, Julia Bornhorst, Sascha Brunke, Joseph A. Caruso, Jennifer S. Cavet, Anson C. K. Chan, Christopher H. Contag, Heran Darwin, George V. Dedoussis, Rodney R. Dietert, Victor J. DiRita, Carol A. Fierke, Tamara Garcia-Barrera, David P. Giedroc, Peter-Leon Hagedoorn, James A. Imlay, Marek J. Kobylarz, Joseph Lemire, Wenwen Liu, Slade A. Loutet, Wolfgang Maret, Andreas Matusch, Trevor F. Moraes, Michael E. P. Murphy, Maribel Navarro, Jerome O. Nriagu, Ana-Maria Oros-Peusquens, Elisabeth G. Pacyna, Jozef M. Pacyna, Robert D. Perry, John M. Pettifor, Stephanie Pfaffen, Dieter Rehder, Lothar Rink, Anthony B. Schryvers, Ellen K. Silbergeld, Eric P. Skaar, Miguel C. P. Soares, Kyrre Sundseth, Dennis J. Thiele, Richard B. Thompson, Meghan M. Verstraete, Gonzalo Visbal, Fudi Wang, Mian Wang, Thomas J. Webster, Jeffrey N. Weiser, Günter Weiss, Inga Wessels, Bin Ye, Judith T. Zelikoff, Lihong Zhang

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metals are essential for the normal functioning of living organisms. Their uses in biological systems are varied, but are frequently associated with sites of critical protein function, such as zinc finger motifs and electron or oxygen carriers. These functions only require essential metals in minute amounts, hence they are termed trace metals. Other metals are, however, less beneficial, owing to their ability to promote a wide variety of eleterious health effects, including cancer. Metals such as arsenic, for example, an produce a variety of diseases ranging from keratosis of the palms and feet to cancers in multiple target organs. The nature and type of metal-induced pathologies appear to be dependent on the concentration, speciation, and length of exposure. Unfortunately, human contact with metals is an inescapable consequence of human life, with exposures occurring from both occupational and environmental sources. A uniform mechanism of action for all harmful metals is unlikely, if not implausible, given the diverse chemical properties of each metal. In this chapter we will review the mechanisms of carcinogenesis of arsenic, cadmium, chromium, and nickel, the four known carcinogenic metals that are best understood. The key areas of speciation, bioavailability, and mechanisms of action are discussed with particular reference to the role of metals in alteration of gene expression and maintenance of genomic integrity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concentrations of 12 trace metals were assessed in wild and cultured specimens of blacklip abalone, Haliotis rubra, from each of two sites, Geelong and Port Fairy, in Victoria, Australia. Cadmium, copper, iron and zinc were quantified in the foot muscle of specimens from all four populations but the concentrations of aluminium, arsenic, beryllium, chromium, lead, manganese, nickel and vanadium were below the detection limits of the instrumental techniques employed. When similar sized specimens from each population were compared, the concentrations of each of the quantifiable metals varied according to location. The Geelong wild population had the highest or equal highest concentrations of each metal. Metal concentrations in the wild populations were usually greater than or equal to the concentrations in the corresponding cultured population. The concentrations of the regulated essential elements, copper and zinc, decreased with an increase in abalone length whereas the concentrations of iron, manganese and cadmium were independent of length. Metal concentrations in H. rubra from all sites complied with the Australian Food Code and other standards of food safety.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Green and Golden Bell frog Litoria aureo is in major decline in Australia, where its distribution is now confined mainly to the east coast of New South Wales (NSW). Infection by the newly emerged amphibian fungal pathogen Batrachochytrium dendrobatidis has been identified as one of the main threats affecting L. aurea. Surprisingly, some of the sites in NSW sustaining the largest populations of this species are industrial and urban habitats that are often disturbed and polluted, which could protect L. aurea from chytrid infection if pollution had fungicidal capacity.The aim of this study was to characterise the trace metal concentration of several L. aurea breeding sites in the Sydney and IIlawarra regions of NSW and to evaluate the fungicidal efficacy of the main "'ace metals identified. Selected L. aurea sites were sampled throughout the breeding season (September to February) to establish the concentration of trace metals in both surface sediment and waters. Physico-chemical parameters including pH and salinity were also measured. Of the trace metals identified, copper and zinc were consistently elevated across sites. Over 50% of sites exceeded the National Sediment Quality Guideline for both copper and zinc concentration, and over 90% of sites exceeded the National Water Quality Guideline for these metals. Consequently, we evaluated their effect on the growth and survival of a laboratory culture of B. dendrobatidis,These tests were performed in media containing dissolved metal concentrations of 0.02 - 0.65 mgL-1 Cu and 0.24 - 5.0 mgL-1 Zn. Growth rates were inferred by total fungal density in liquid culture (based on spectral absorbance measurements), final dry weight, and the density of zoospores in fungal cultures grown for 28 days. Both copper and zinc were found to reduce the growth and proliferation of B. dendrobatidis, but in a non-linear manner. This suggests that L. aurea may be gaining some protection from B. dendrobatidis infection at several of the sites examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements of total, filterable and DGT-labile concentrations of nine metals (Al, Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn) have been made at five sites up to 4.2km from a deep sea tailings outfall operated by Lihir Gold Ltd. at Lihir Island, Papua New Guinea. At each site, pairs of DGT units (one containing a 0.4mm and the other a 0.8mm diffusive gel layer) were deployed at three depths (50–70; 105–130; 135–155m) for 4–7 days. Comparison of predicted water column DGT-labile metal concentrations in field deployments showed the 0.8mm DGT units were relatively enriched in metals, with the effect being greatest closer to the outfall for Pb and Mn and least for Fe, Cr, Ni and Zn. The most likely explanation for this is that in addition to simple ion diffusion, kinetic factors associated with ageing or desorption processes govern release of metals from iron and aluminium oxyhydroxide colloids which diffuse through the gels. The thicker gels have a longer residence time over which metals can be released for adsorption. This model explains why enrichment is most pronounced near the outfall; more distant sites have lower colloid concentrations because of the longer time for coagulation to increase particle sizes to the extent they cannot enter the gels. Total and filterable metal (FM) concentrations were frequently below the limits of detection (LOD) achievable by conventional ICP-AES (1–52gL−1) and this limited their usefulness for assessing environmental risk and for metal speciation determination. Because of its pre-concentration step DGT gave metal concentrations above their LODs and these decreased exponentially with distance from the outfall. Concentrations of DGT–labile metal fell below Australian water quality guidelines for protection of 99% of marine organisms within 0.13km of the outfall for Cd, Cr and Ni and below that for protection of 95% of marine organisms within 0.4, 0.7 and 3.6km for lead, zinc and copper, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study determines how levels of various trace metals in wool and the colour of the fibre change as a result of sunlight exposure and treatment with chelating compounds during wool growth. Twenty-four yearling Merino sheep were clipped on the shoulders and rumps and fitted with sheep coats modified with transparent patches. Patches over the shoulder wool (one per sheep) were either polyethylene (PE) that transmits ultraviolet light or polyvinyl chloride (PVC) that excludes ultraviolet light. The rump wool on each sheep was treated either with a copper chelator treatment (kojic acid or methyl gentisate in aqueous alcohol) or aqueous alcohol only. For 12 of the sheep the rumps were exposed to sunlight through PE patches while rump wool on the other sheep was covered by the sheep coat. Wool was harvested after 11 weeks’ growth with yellowness (Y-Z) and individual mineral contents measured using the same clean wool sample. Sunlight exposure through PE patches caused a mean increase in Y-Z to 9.1 (shoulder) or 9.5–10.1 (rump) from a base level of 7.1–7.2 (shoulder) or 7.0–7.6 (rump) in wool protected by the sheep coat. In contrast, there was no significant change in Y-Z for the PVC patch (shoulder). Therefore, it appears that ultraviolet light damage caused the increased Y-Z. Most of the trace metals analysed increased in the shoulder wool exposed to sunlight but the paired differences for PVC were lower than PE. It appears that changes in fibre caused by sunlight exposure (especially ultraviolet light) facilitate adsorption of minerals from the environment, including the animal’s own suint. Application of the chelating compounds to the rump wool caused pronounced yellowing of the wool with Y-Z increase being most pronounced for kojic acid. Copper levels in the wool were reduced by kojic acid and methyl gentisate while calcium levels were increased by kojic acid and reduced by methyl gentisate. It is not clear from these findings whether minerals and copper in particular contribute to yellowing of wool. However, the different effects of sunlight and chelation on mineral contents in wool shown may well relate to alternative mechanisms of discoloration (i.e. photoyellowing versus bacterial).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co2+, Cu2+, Mn2+, Ni2+, and Zn2+ and the non-essential divalent cation Cd2+ in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5 μM Cd2+, 2 μM Co2+, 0.5 μM Cu2+, 500 μM Mn2+, 1 μM Ni2+, and 18 μM Zn2+. Cells exposed to these non-toxic concentrations with combinations of Zn2+ and Cd2+, Zn2+ and Co2+, Zn2+ and Cu2+ or Zn2+ and Ni2+, had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500 μM Mn2+ showed similar growth compared to the untreated controls. Metal levels were measured after one and 72 h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using 65Zn showed that after 72 h of exposure Zn2+ uptake was reduced by most metals particularly 0.5 μM Cd2+, while 2 μM Co2+ increased Zn2+ uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the 2009/2010 summer, a comprehensive environmental impact assessment (EIA) of the wastewater discharge at Davis Station, East Antarctica was completed. As part of this, histological alteration of gill and liver tissue in Antarctic Rock-cod (Trematomus bernacchii) from four sites along a spatial gradient from the wastewater outfall were assessed. All fish within 800 m of the outfall exhibited significant histological changes in both tissues. Common pathologies observed in fish closest to the outfall include proliferation of epithelial cells with associated secondary lamellar fusion in the gills and multifocal granulomata with inflammation and necrosis as well as cysts in the liver. Fish from sites >800 m from the outfall also exhibited alterations but to a lesser degree, with prevalence and severity decreasing with increasing distance from the outfall. This study highlights the value of histopathological investigations as part of EIAs and provides the first evidence of sub-lethal alteration associated with wastewater discharge in East Antarctica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentrations of 13 elements were determined in the muscle, liver, intestine, kidney, and gonads of cultured and wild carp caught at two sites in Lake Kasumigaura, Japan, between September 1994 and September 1995. Despite having a reputation for being heavily polluted, the carp were not heavily burdened with metals. Our results suggest that despite their dietary differences, the wild and cultured fish were accumulating and distributing metals in the same manner and that aquaculture practices are not increasing metal concentrations in these fish. Metal concentrations were lowest in muscle, and did not exceed established quality standards for fish. The differences in metal concentrations between cultivated and wild carp are negligible and should pose no health problems for consumers of either type of fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The burning of brown coal for electricity generation produces thousands of tonnes of fly ash each year. Treatment of the fly ash can reduce leach rates of metals and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for fly ash obtained from electrostatic precipitators and ash disposal ponds. The ratio of fly ash and geopolymer was varied to determine the effects of different compositions on leaching rates. The major element leachate concentrations obtained from pond ash were lower than that of precipitator fly ash. Conversely, precipitator ash-geopolymers were better for trace heavy metal stabilisation. Effective reduction of elemental concentrations in the leachate has been achieved, particularly for calcium, arsenic, selenium, strontium and barium. Scanning electron microscopy revealed the distribution of metals originated from fly ash and from added geopolymer material. It also showed that some elements are leached from ash particles to the geopolymer phase and others remained as undissolved particles. Qualitative analysis showed that fly ash particles interacted with the geopolymers phase through surface reactions.